اموزش معامله گری

مثلث فراكتالي

من فکرمی کنم که معماری بخش بزرگی برای ترویج فرهنگ بین مردم هستش. مردم اون چیزی رو که میبینند الگوی خودشون قرار میدهند. پس بامعماری خوب ودرست می شه فرهنگ مردم رو به حد اعلاء برسونیم

Architecture

Fractal African "Ba-Ila" village-plan
Here is an amazing raytraced Fractal Temple i found on the web (artist unknown)





هندسه فراکتال

واژه فراکتال مشتق از واژه لاتینی فراکتوس- به معنی سنگی که به شکل نامنظم شکسته خرد شده است- در سال ۱۹۷۵ برای اولین بار توسط بنوت مندل بروت مطرح شد. فراکتال ها شکل هایی هستند که بر خلاف شکل های هندسی اقلیدسی به هیچ وجه منظم نیستند. این شکل ها اولاً سر تاسر نامنظم اند، ثانیاً میزان بی نظمی آنها در همه مقیاسها یکسان است.

با ملاحظه اشکال موجود در طبیعت، مشخص می شود که هندسه اقلیدسی قادر به تبیین و تشریح اشکال پیچیده و ظاهراً بی نظم طبیعی نیست.
مندل بروت در سال ۱۹۷۵ اعلام کرده که ابرها به صورت کره نیستند، کوهها همانند مخروط نمی باشند، سواحل دریا دایره شکل نیستند، پوست درخت صاف نیست و صاعقه بصورت خط مستقیم حرکت نمی کند.


وقتی که به یک جسم فراکتال نزدیک می شویم، می بینیم که تکه های کوچکی از آن که از دور همچون دانه ها بی شکلی به نظر می رسید، بصورت جسم مشخص در می آید که شکلش کم و بیش مثل همان شکلی است که از دور دیده می شود. در طبیعت نمونه های فراوانی از فراکتال ها دیده می شود. درختان ، ابرها، کوهها، رودها، لبه سواحل مثلث فراكتالي دریا، و گل کلم ها اجسام فراکتال هستند بخش کوچکی از یک درخت که شاخه آن باشد شباهت به کل درخت دارد. این مثال را می توان در مورد ابرها، گل کلم، صاعقه و سایر اجسام فراکتال عنوان نمود.
بسیاری از عناصر مصنوع دست بشر نیز بصورت فراکتال می باشند. تراشه های سلیکان، منحنی نوسانات بازار بورس، رشد و گسترش شهرها و بالاخره مثلث سرپینسکی را می توان در این مورد مثال زد.

در علم ریاضی فراکتال یک شکل مهندسی است که پیچیده است ودارای جزئیات مشابه در ساختار خود در هر مقیاسی است.

میزان بی نظمی در آن از دور و نزدیک به یک میزان است. مثلث سرپینسکی یک مثلث متساوی الاضلاع است که نقاط وسط سرضلع آن به یکدیگر متصل شده اند. اگر این عمل در مثلث فراكتالي داخل مثلث های متساوی الاضلاع جدید تا بی نهایت ادامه یابد، همواره مثلث هایی حاصل می شوند که مشابه مثلث اول هستند.

هندسه ی اقلیدسی – احجام کامل کره ها و هرم ها و مکعب ها واستوانه ها- بهترین راه نشان دادن عناصر طبیعی نیستند . ابرها و کوه ها و خط ساحلی و تنه ی درختان همه با احجام اقلیدسی در تضاد هستند و نه صاف بلکه ناهموار هستند و این بی نظمی را در مقیاس های کوچک نیز به ارمغان می آورند که یکی از مهمترین خصوصیات فراکتال ها همین است .
این بدین معناست که هندسه ی فراکتال بر خلاف هندسه ی اقلیدسی روش بهتری را برای توضیح و ایجاد پدیده هایی همانند طبیعت است .زبانی که این هندسه به وسیله ی آن بیان می شود الگوریتم نام دارد که با اشیا مرکب می توانند به فرمولها و قوانین ساده تری ترجمه و خلاصه شوند.
فرکتال از کلمه ی لاتین فراکتوس به معنی سنگی نامنظم شکسته و خرد شده است، گرفته شده است . اولین بار فرکتال را دکتر ماندلبروت طی نظریه ای که برای مسائل جهان هستی ارائه کرد و در این نظریه عنوان کرد که جهان هستی بعدی مابین ۲۳/۱-۳۴/۱۱ مثلث فراكتالي دارد و تمامی پدیده های طبیعی به نوعی فرکتالهایی می باشند در جهان هستی که برای ما ناشناخته اند.
فراکتال ها انواع عناصری هستند که فرم فضایی آنها صاف نیست .بنابراین “نامرتب ” نامیده شده اند و این نامنظمی آنها به طور هندسی در راستای مقیاسهای گوناگون در داخل هرم تکرار می شوند .هر چیز طبیعی در اطراف ما در اصل نوعی فراکتال است . به این سبب که خطوط صاف و پلانها فقط در دنیای ایده آل ریاضی وجود دارد .در کنار این تئوری هر سیستم که بتواند به صورت هندسی متصور و تحلیل شود می تواند یک فرکتال باشد .جهان در فرم فیزیکی ( مادی ) کلی خود پر هرج و مرج ،ناممتد و نامنظم است اما در پس این اولین ذهنیت و گمان یک نوع دستوری نهفته است که منظم و دارای ترکیبی واضح است . بهترین راه برای تعریف یک فرکتال توجه به صفتها و نشانه های آن است یک فرکتال ” نامنظم ” است . این بدان معنی است که در آن هیچ قسمتی صاف نیست . فرکتال ” خود مشابه ” است و این بدین معنی است که ” اجزا ” شبیه کل هستند .
فراکتال ها به وسیله ی ” تکرار ” توسعه می یابند که به این معنی است که مثلث فراكتالي تغییرشکل مکرراً ایجاد شده و وابسته به موقعیت شروع است . خصوصیت دیگر آن این است که فراکتال ” مرکب ” است . اما با این حال می توان آن را به وسیله ی الگوریتم های ساده نشان داد و همچنین بدون معنی نیز نیست که در پس عناصر نامرتب طبیعی یک رشته قوانین موجود است .
Benoît B. Mandelbrot (born 20 November 1924) is a French mathematician, best مثلث فراكتالي known as the father of fractal geometry. He is Sterling Professor of Mathematical Sciences, Emeritus at Yale University; IBM Fellow Emeritus at the Thomas J. Watson Research Center; and Battelle Fellow at the Pacific Northwest National Laboratory. He was born in Poland. His family moved to France when he was a child, and he was educated in France. He is a dual French and American citizen. Mandelbrot now lives and works in the United States.

فرکتال (برخال) چیست؟
ما فرکتال‌ها را هر روز می‌بینیم: درختها ، کوهها، پراکنده شدن برگهای پاییزی روی زمین ، ساحل دریا و …


حالا به این تعریف دقت کنید: فراکتال تصویر هندسی چند جزیی است که می‌توان آن را به تکه هایی تقسیم کرد که انگار هر تکه یک کپی از ” کل ” تصویر است . به سختی بتوان باور کرد که چیزی مانند فراکتال‌ها بتواند اینقدر پیچیده و سخت باشد و در عالی ترین سطوح ریاضی به کار رود و در عین حال بتوان به تصویر یک سرگرمی خوب به آن نگاه کرد. اگر بخواهیم بترسانیمتان می‌توانیم بگوییم که هندسه فراکتالی حرکت اشکال در فضا را ثبت می‌کند و یا ناهمواری دنیا و انرژی و تغییرات دینامیک آن را نشان می‌دهد ! اما راستش را بخواهید فراکتال چیز ساده ای است به سادگی ابرها یا شعله های آتش.

واژه فرکتال از ریشه ای یونانی به معنای ” تکه تکه شده ” و”بخش بخش” آمده است و به نحوی تعریف ریاضی اش را در خود دارد

اگر بخواهیم از دید کلی به بحث فرکتال نگاه کنیم آن را می توان به ۳ دسته تقسیم بندی کرد :
۱- هندسه فرکتال : در این قسمت از دید ریاضی به فرکتال نگاه می شود که بیشتر مورد توجه ریاضی دان ها قرار گرفته اما پایه های قسمت های بعدی نیز می باشد ، و تا با عناصر اصلی فرکتال و چگونگی ایجاد این فرم آشنا نشویم نمی توان فرم های مختلف و حجم های مختلف را شناسایی کرد.
۲- فرم فرکتال : قسمت دوم این مقاله است ، با توجه به اینکه ،محصول هندسه فرکتال فرمی است که دقیقاً آن مشخصه های هندسی مربوطه را دارد . در این بخش فرم هایی همچون فرم های درخت ، فرم های مندلبرت ، فرمهای موجود در طبیعت ، ایجاد فرم های رندوم (Random fractal) ، خود متشابهی (self similarity) ، فرکتال در نقاشی ( آثار نقاشانی چون جکسون پالاک ) و … مورد بررسی قرار خواهد گرفت .
۳- حجم فرکتال (فرکتال در معماری): نتیجه فرم های مختلف می تواند به یک اثر معماری منتج شود لذا در این بخش حجم های فرکتالی و آثار معماری مطرح می شود .
اشکال فرکتالی چنان با زندگی روزمره ما گره خورده که بسیار جالب است. با کمی دقت به اطراف خود، می توان بسیاری از این اشکال را یافت. از گل فرش زیر پای شما و گل کلم درون مغازه های میوه فروشی گرفته تا شکل کوه ها، ابرها، دانه برف و باران، شکل ریشه، تنه و برگ درختان و بالاخره شکل سرخس ها، سیاهرگ و حتی می توان از این هم فراتر رفت : سطح کره ماه ، منظومه شمسی و ستارگان .
البته در بخش فرم های فرکتال این موضوع بیشتر مشهود است به طوری که بسیاری از فرمهای خلقت دارای ساختاری فرکتال هستند .
این روزها از فراکتالها به عنوان یکی از ابزارهای مهم در گرافیک رایانه ای نیز نام می برند، اما هنگام پیدایش این مفهوم جدید بیشترین نقش را در فشرده سازی فایلهای تصویری بازی می کنند.
فرکتال از منظر هندسی
هندسه فرکتالی یا هندسه فرکتال ها پدیده ایست که چندی پیش پا به دنیای ریاضیات گذاشت.
واژه فرکتال در سال ۱۹۷۶ توسط ریاضیدان لهستانی به نام بنوئیت مندلبرات وارد دنیای ریاضیات شد.
او در سال ۱۹۸۷ پرفسوری خود را در رشته ریاضیات گرفت.
مندلبرات وقتی که بر روی تحقیقی پیرامون طول سواحل انگلیس مطالعه می نمود به این نتیجه رسید که هر گاه با مقیاس بزرگ این طول اندازه گرفته شود بیشتر از زمانی است که مقیاس کوچکتر باشد.
از لحاظ واژه مندلبرات انتخاب اصطلاح فرکتال (fractal) را از واژه لاتین fractus یا fractum (به معنی شکسته ) گرفت تا بر ماهیت قطعه قطعه شونده که یکی از مشخصه های اصلی این فرم است ،تاکید داشته باشد .
فرهنگستان زبان هم واژه برخال را تصویب کرده و همچنین برای واژه فرکتالی واژه برخالی را تصویب کرده است.
واژه فرکتال به معنای سنگی است که به شکل نامنظم شکسته شده باشد.
اما در هندسه :
فرکتال از دید هندسی به شیئی گویند که دارای سه ویژگی زیر باشد:
۱-اول اینکه دارای خاصیت خود متشابهی باشد یا به تعبیر دیگر self-similar باشد.
۲-در مقیاس خرد بسیار پیچیده باشد.
۳-بعد آن یک عدد صحیح نباشد (مثلاً‌ ۱٫۵).
برای درک بهتر نسبت به مشخصات بالا در فرم هندسی ، بد نیست نمونه ای که شاید تا کنون با آن برخورد کرده باشید مطرح شود :


تصویر بالا ( یک کبوتر ) یک فرم هندسی است که دقیقاً با تعاریفی که در تعریف فرکتال بیان شد، منطبق است یعنی هم دارای خاصیت خود متشابهی و پیچیدگی در مقیاس خرد و نیز عدم داشتن بعد صحیح . تصویر بالا دارای بعدی بین عدد ۲ و ۳ است.
حال به بررسی هر یک در زیر پرداخته شده :
خاصیت خود متشابهی فرکتا لها
شیئی را دارای خاصیت خود متشابهی می گوییم: هر گاه قسمت هایی از آن با یک مقیاس معلوم ، یک نمونه از کل شیئی باشد.
ساده ترین مثال برای یک شیئ خود متشابه در طبیعت گل کلم است که هر قطعه‌ی کوچک گل کلم متشابه قطعه بزرگی از آن است .
همین طور درخت کاج یک شیئ خود متشابه است ،چرا که هر یک از شاخه های آن خیلی شبیه یک درخت کاج است ولی در مقیاس بسیار کوچکتر .همچنین در مورد برگ سرخس نیز چنین خاصیتی وجود دارد.
رشته کوه ها ، پشته های ابر ، مسیر رودخانه ها و خطوط ساحلی نیز همگی مثال‌ها‌یی از یک ساختمان خود متشابه هستند.
نمونه ای از خود متشابهی در شکل زیر نیز دیده می شود.

فراکتال شکل هندسی پیچیده است که دارای جزییات مشابه در ساختار خود در مقیاسهای متفاوت می باشد و بی نظمی در آن از دور و نزدیک به یک اندازه است .
واژه فراکتال مشتق گرفته شده از واژه لاتینی فراکتوس به معنای سنگ است که به شکل نا منظم شکسته و خرد شده .این واژه برای اولین بار توسط بنوت مندل بروت مطرح شد .
جسم فراکتال از دوز و نزدیک یکسان دیده می شود .مثلا وقتی به یک کوه نگاه می کنیم شکلی شبیه به یک مخروط می بینیم که روی آن مخروطهای کوچکتر و بی نظمی دیده می شود ولی وقتی نزدیک می شویم همین مخروطهای کوچک شبیه کوه هستند و یا شاخه های یک درخت شبیه خود درخت هستند .البته در طبیعت نمونه های اجسام فراکتال فراوان است مثلا ابرها -رودها -سرخس ها و حتی گل کلم از اجسام فراکتال است .و اگر به ساخته های دست بشر هم نگاه کنیم تراشه های سیلیکان و یا مثلث سرپینسکی نیز فراکتال هستند . و در معماری همیشه نباید نیاز بشر را هندسه اقلیدسی تامین کند .گسترش شهرها نمونه آشکاری از فراکتال است.

- اشکال اقلیدسی با استفاده از توابع ایستا تولید می شوند ولی اشکال فرکتال با فرآیندهای پویا تولید می شوند.( فرآیندهای پویا, فرآیندهایی هستند که دارای حافظه می باشند و رفتار آنها به گذشته بستگی دارد.)
- اشکال فرکتال دارای خاصیت خود همانندی است. طول این اشیا بی نهایت است که در فضای محدود, محصور شده اند.


- مجموعه های فرکتال, از زیر مجموعه هایی تشکیل شده اند که این زیر مجموعه ها شبیه مجموعه های بزرگتر هستند.
- هندسه فرکتال دارای ساختارهای ظرفیتی بالاست ولی ظرفیت اطلاعاتی اشیای اقلیدسی بسیار محدود و حاوی اطلاعات تکراری است.
- هندسه فرکتال, بیان ریاضی از معماری طبیعت است.
- هر فرآیند تکراری و پویا باعث ایجاد ساختارهای پیچیده فرکتال نمی شود. مکانیزم تولید چنین ساختارهای پویایی, آشوب است. در حقیقت, فرکتال تصویر ریاضی از آشوب است.

رابطه فراکتال و معماری
مطالعه هندسه باید به طراح کمک کند به درک بهتری از جریان جزئیات در پیرامون ما و جهان طبیعی دست یابد.

خصوصیت فراکتالی یک ترکیب معماری در تسلسل جالب جزئیات است. این تسلسل برای حفظ جذابیت معماری لازم است. هنگامی که شخص به یک ساختمان نزدیک و سپس به آن وارد می شود همیشه باید مقیاس کوچکتر دیگری همراه با جزئیات مثلث فراكتالي جذاب وجود داشته باشد تا معنای کلی ترکیب را بیان کند که این یک ایده فراکتال است.
انسانها در روزگار قدیم که در طبیعت می زیستند و مانند انسان دوره مدرن, با طبیعت بیگانه نبودند, معماریشان با نظم طبیعت بود. آنها به این دلیل که در طبیعت رشد میافتند, ضمیر ناخودآگاهشان نیز با نظم طبیعت- یعنی با نظم فراکتال- رشد میافت, در نتیجه مصنوعاتش نیز دارای نطم فراکتال می بود.

به دنبال بیگانگی انسان معاصر با طبیعت و دور شدن ساخته هایش از تشابه با ساختارهای طبیعت, معماران معاصر به دنبال نمود دادن ساختار فراکتال طبیعت در آثارشان هستند. هر چند که این هنوز آغاز راه است ولی ارتباطی جدیدی در زمینه طبیعت و معماری معاصر را نشان میدهد. ارتباطی که انسان مدرن آن را فراموش کرده بود.

This image has been resized. Click this bar to view the full image. The original image is sized 1024x768.

This image has been resized. Click this bar to view the full image. The original image is sized 1024x768.


Military design incorporates the fractal antenna into the helmet itself!
Fractal Furniture is NOW HERE! Fractal Table

من فکرمی کنم که معماری بخش بزرگی برای ترویج فرهنگ بین مردم هستش. مردم اون چیزی رو که میبینند الگوی خودشون قرار میدهند. پس بامعماری خوب ودرست می شه فرهنگ مردم رو به حد اعلاء برسونیم

پژوهش سرای بوعلی سینا

حال آيا در مورد «فراكتال» ‌ها (معادل فارسي آن «برخال» است)‌ چيزي شنيده‌ايد. در اين مورد در كتاب‌هاي درسي رياضي‌اتان مطالبي گفته شده است.

در واقع «برخال»‌ها موجوداتي هندسي‌اند كه هرچه آن را از نزديك نگاه كنيم شبيه شكل نخستين است مانند: «گل كلم». به اين اشيا‌ اصطلاحاً «خودمتشابه» گويند.


ایده‌ي «خود متشابه» در اصل توسط «لایبنیتس» بسط داده شد. او حتی بسیاری از جزئیات را حل کرد. در سال ۱۸۷۲ «کارل وایرشتراس» مثالی از تابعی را پیدا کرد با ویژگی‌های غیربصری که در همه‌جا پیوسته بود ولی در هرجا مشتق‌پذیر نبود. گراف ‌این تابع اکنون «برخال» نامیده می‌شود.

در سال ۱۹۰۴ «هلگه فون کخ» به‌همراه خلاصه‌ای از «تعریف تحلیلی وایرشتراس» ، تعریف هندسی‌تری از تابع متشابه ارائه داد که حالا به «برفدانه کخ» معروف است. در سال ۱۹۱۵ «واکلو سرپینسکی» مثلث‌اش را و سال بعد فرش‌اش (برخالی) را ساخت.

‌ایده‌ي «منحنی‌های خودمتشابه» توسط «پاول پیر لوی» مطرح شد او در مقاله‌اش در سال ۱۹۳۸ با عنوان «سطح یا منحنی‌های فضایی» و «سطوحی شامل بخش‌های متشابه نسبت به کل» منحنی برخالی جدیدی را توصیف کرد.

منحنی «لوی سي. گئورگ کانتور» مثالی از زیرمجموعه‌های خط حقیقی با ویژگی‌های معمول ارائه داد‌. این «مجموعه‌های کانتور» اکنون به‌عنوان «برخال» شناخته می‌شوند.

اواخر قرن نوزدهم و اوایل قرن بیستم «توابع تکرار شونده در سطح پیچیده» توسط «هانری پوانکاره» ، «فلیکس کلاین» ، «پیر فاتو» و «گاستون جولیا» شناخته شده بودند. با ‌این وجود بدون کمک گرافیک کامپیوتری آن‌ها نسبت به نمایش زیبایی بسیاری از اشیایی که کشف کرده بودند، فاقد معنی بودند.
در سال 1960 «بنوا مندلبرو» تحقیقاتی را در شناخت خودمتشابه‌ای طی مقاله‌ای با عنوان «طول ساحل بریتانیا چقدر است؟ خود متشابه‌ای آماری و بعد کسری» آغاز کرد. ‌این کارها براساس کارهای پیشین «ریچاردسون» استوار بود.
در سال ۱۹۷۵ «مندلبروت» جهت مشخص کردن شيئی که بعد « هاوسدورف بیسکویچ » آن بزرگ‌تر از بعد توپولوژیک است کلمه‌ي «برخال» را ‌ایجاد کرد.
او‌ این تعریف ریاضی را از طریق شبیه‌سازی خاص کامپیوتری تشریح کرد.

n مثلث خيام - پاسكال

حال با اين توضيح مختصر در مورد برخال‌ها برمي‌گرديم به «مثلث خيام – پاسكال» .

در مورد اين مثلث زياد شنيده‌ايم از جمله در مورد كاربرد فراوانش در نظريه‌ي اعداد و تركيبيات.

حال مي‌خواهم يك «برخال» ساده را در اين مثلث به شما نشان دهم. موضوعي كه باعث مي‌شود اين مثلث جايي را نيز در دنياي برخال‌ها – يعني سيستم‌هاي ديناميكي – پيدا كند.

مسأله خيلي ساده است، تمام اعداد زوج را در «مثلث خيام – پاسكال» پاك كنيد، آن‌چه باقي مي‌ماند برخالي معروف است با نام «مثلث سرپينسكي» :

مثلث فراكتالي

گربه‌ها ، قناری‌ها و کانگوروها به نحوی به هم شبیه هستند. اما در هندسه، تشابه معنای خاصی دارد که حتماً آن را در کتاب ریاضی خود دیده اید و می‌دانید که تشابه، یکسانی اشکال در عین متفاوت بودن اندازه هاست. به زبان ساده تر اگر بتوانید با بزرگ یا کوچک کردن دو شکل، آن ها را دقیقاً همانند هم کنید، آن دو شکل متشابه اند. اما شکل های خود متشابه کدام‌ها هستند؟ اشکال زیادی وجود دارند که فراکتالی نیستند اما خود متشابه اند.

به این شکل دقت کنید!

شکل کلی یک ذوزنقه است و خود از ذوزنقه های کوچک تر کنار هم پدید آمده است. این مورد یک مثال از تشابه به خود است.

حال به این مثلث خاص نگاه کنید.

این مثلث بزرگ که مثلث سیرپینسکی نام دارد، از مثلث های مشابه کوچک تر تشکیل شده است که همین طور کوچک تر و کوچک تر هم می‌شوند.

چند سایز مثلث وجود دارد و آیا همه باهم و با مثلث بزرگ تشابه دارند؟

اگر شکل قرمز را شکل پایه در نظر بگیریم ، در شکل آبی چند نمونه از آن وجود دارد؟

آیا مربع‌ها خود متشابه اند؟ یعنی می‌توان با مربع های کوچک تر، مربع بزرگی ساخت. شش ضلعی‌ها چه طور؟

آیا همه ی دایره‌ها متشابه اند؟ آیا خود متشابه هم هستند؟

تشکیل از راه تکرار Iterative formation

مقصود از تشکیل از راه تکرار چیست؟ یعنی برای درست کردن یک فراکتال می‌توانیم یک شکل معمولی هندسی ( مثلاً یک خط ) را انتخاب کنیم و با آن یک شکل بسازیم. سپس با شکل به دست آمده، شکل پیچیده تری مانند شکل های قبلی بسازیم، و همین طور به این کار ادامه دهیم. اشکال فراکتالی به این طریق به وجود می‌آیند و برنامه های کامپیوتری متعددی برای ایجاد آن ها نوشته شده است که هر کدام نام و روشی خاص دارند. مثلاً مثلث سیرپنسکی که قبلاً مشاهده کردید و یا :

ابعاد کسری fractional dimension

همان طور که می‌دانید، یک نقطه بعد ندارد.

یک خط، شکلی یک بعدی است

یک صفحه، دو بعد دارد.

و شکل های حجیم، سه بعد دارند.

اما فراکتال‌ها می‌توانند بعد کسری داشته باشند! مثلاً یا . چه طور چنین چیزی امکان دارد؟

اگر یک پاره خط را نصف کنیم، چه پیش می‌آید؟

حال دو خط داریم که همانند هم هستند.

اگر هر دو بعد یک مربع را نصف کنیم، چه طور؟ حال چهار مربع هم اندازه داریم.

با نصف کردن هر سه بعد یک مکعب به هشت مکعب کوچک تر می‌رسیم.

به جدول زیر دقت کنید:

شکل بعد تعداد اشکال متشابه حاصله
پاره خط 1 2 1 =2
مربع 2 2 2 =4
مکعب 3 2 3 =8

چه الگویی وجود دارد؟ به نظر می‌رسد که بعد، همان " توان " است. یعنی برای پیدا کردن تعداد اشکال مثلث فراكتالي حاصل باید 2 را به توان بعد آن شکل برسانیم.

پس می‌توانیم مورد زیر را نیز به این جدول اضافه کنیم:

هر شکل خود متشابه d 2 d =n

این بار به سراغ مثلث خودمان می رویم.

برای دیدن محیط تعاملی، نرم افزار جاوا را از اینجا دریافت کنید.

اگر هر ضلع را نصف کنیم، چند مثلث تشکیل می‌شود؟ به خاطر داشته باشید که مثلث های سفید جزء مثلث سیرپینسکی نیستند. با نصف کردن هر ضلع، به سه مثلث می‌رسیم، یعنی: 3=2 d

3 عددی است بین 2 1 و2 2 . کسانی که با لگاریتم آشنایی داشته باشند، به راحتی این مسأله را حل می‌کنند. برای مطالعه ی بیش تر می‌توانید به سایت های زیر مراجعه کنید:

فراکتال

در ریاضیات ، فراکتال زیرمجموعه ای از فضای اقلیدسی با بعد فراکتالی است که به شدت از بعد توپولوژیکی آن فراتر می رود . همانطور که در بزرگنمایی های متوالی مجموعه مندلبرو نشان داده شده است، فراکتال ها در مقیاس های مختلف یکسان ظاهر می شوند . [1] [2] [3] [4] فراکتال‌ها اغلب الگوهای مشابهی را در مقیاس‌های کوچک‌تر نشان می‌دهند، ویژگی به نام خود شباهت ، همچنین به عنوان تقارن در حال گسترش یا تقارن آشکار می‌گویند. اگر این تکرار در هر مقیاس دقیقاً یکسان باشد، مانند اسفنج منگر ، [5] به آن شباهت افین می گویند. هندسه فراکتال در شاخه ریاضی تئوری اندازه گیری قرار دارد .

یکی از راه‌هایی که فراکتال‌ها با اشکال هندسی محدود متفاوت هستند ، مقیاس آنهاست . دوبرابر کردن طول لبه های یک چند ضلعی ، مساحت آن را در چهار ضرب می کند، که دو (نسبت طول ضلع جدید به قدیم) به توان دو (بعد فضایی که چند ضلعی در آن قرار دارد) افزایش می یابد. به همین ترتیب، اگر شعاع یک کره دو برابر شود، حجم آن به اندازه هشت کاهش می یابد، که دو (نسبت شعاع جدید به شعاع قدیم) به توان سه (بعدی که کره در آن قرار دارد) است. با این حال، اگر طول های یک بعدی یک فراکتال همه دو برابر شود، محتوای فضایی مقیاس های فراکتال با توانی که لزوما یک عدد صحیح نیست. [1] این قدرت نامیده می شود بعد فراکتال فراکتال، و معمولاً از بعد توپولوژیکی فراکتال فراتر می رود . [6]

از نظر تحلیلی، بسیاری از فراکتال ها در هیچ کجا قابل تمایز نیستند. [1] [4] یک منحنی فراکتال نامتناهی را می‌توان به‌عنوان سیم پیچی در فضا به‌طور متفاوت از یک خط معمولی تصور کرد - اگرچه از نظر توپولوژیکی هنوز یک بعدی است ، اما بعد فراکتالی آن نشان می‌دهد که آن نیز شبیه یک سطح است. [1] [6]

با شروع قرن هفدهم با مفاهیم بازگشت ، فراکتال ها از طریق روش های ریاضی دقیق و فزاینده ای به مطالعه توابع پیوسته اما غیر قابل تمایز در قرن نوزدهم توسط کارهای اصلی برنارد بولزانو ، برنهارد ریمان ، و کارل وایرشتراس ، [7] و در مورد ابداع کلمه فراکتال در قرن بیستم و متعاقب آن افزایش علاقه به فراکتال ها و مدل سازی مبتنی بر کامپیوتر در قرن بیستم. [8] [9]

در مورد چگونگی تعریف رسمی مفهوم فراکتال بین ریاضیدانان اختلاف نظر وجود دارد. خود مندلبروت آن را به عنوان "زیبا، لعنتی سخت، به طور فزاینده مفید. این همان فراکتال ها" خلاصه کرد. [10] به طور رسمی تر، در سال 1982، ماندلبروت فراکتال را این گونه تعریف کرد : "فرکتال طبق تعریف مجموعه ای است که بعد هاسدورف-بسیکوویچ به شدت از بعد توپولوژیکی آن فراتر می رود ." [11] بعداً، چون این را خیلی محدود می‌دید، تعریف را به این معنا ساده کرد و بسط داد: «فرکتال شکلی است که از اجزایی شبیه به کل ساخته شده است». [12] هنوز بعداً، ماندلبرو پیشنهاد کرد "استفاده از فراکتال بدون تعریف پدانتیک، بعد فراکتال به عنوان یک اصطلاح عمومی قابل استفاده برای همه انواع است." [13]

اتفاق نظر بین ریاضیدانان بر این است که فراکتال‌های نظری ساختارهای ریاضی بی‌نهایت مشابه، تکراری و دقیقی هستند که ابعاد فراکتالی دارند، که نمونه‌های زیادی از آنها فرمول‌بندی و مطالعه شده است. [1] [2] [3] فراکتال ها به الگوهای هندسی محدود نمی شوند، بلکه می توانند فرآیندها را در زمان توصیف کنند. [5] [4] [14] [15] [16] [17] الگوهای فراکتال با درجات مختلف خود شباهت در رسانه های دیداری، فیزیکی و شنیداری ارائه یا مطالعه شده اند [18] و در طبیعت یافت می شوند ، [19] ] [20] [21] [22] [23] فناوری ، [24] [25] [26] [27] هنر ، [28] [29] معماری [30] و حقوق . [31] فراکتال‌ها در زمینه تئوری آشوب از اهمیت ویژه‌ای برخوردار هستند، زیرا در تصاویر هندسی اغلب فرآیندهای آشفته (معمولاً به عنوان جاذبه‌ها یا به عنوان مرز بین حوضه‌های جاذبه) ظاهر می‌شوند. [32] بسیاری از شبکه های واقعی و مدل دارای ویژگی های فراکتالی مانند شباهت خود هستند. [33] [34] [35]

فراکتال ها

فراکتال ها

همه شما حتی اگر از هندسه نیز چیزی ندانید بارها نام آن را شنیده اید. و حتماً می دانید که «جبر، حساب و هندسه» سه شاخه مهم از ریاضیات است، همین سه عنوان در ریاضیات پایه گذار پیشرفت در تمام علوم محسوب می شوند.

شاید همین حس مسئولیتی که ریاضیات به تمام بخش های علوم دارد آن را بسیار جدی و در نظر بسیاری، علمی خشک و در عین حال سخت جلوه داده است. در این میان هندسه نقش بسیار مهمی را حتی در شاخه های ریاضی برعهده دارد. هندسه که می توان به آن علم بازی با اشکال لقب داد، خود پایه گذار دیگر شاخه های ریاضی است. زیرا تمام قسمت های دیگر در ریاضیات و علوم دیگر تا به صورت مشهودی قابل بررسی دقیق و اصولی نباشد جای پیشرفت چشمگیری برای آنها نمی توان درنظر گرفت. با این اوصاف، شایسته است به هندسه لقب «مادر بزرگ علوم» دهیم.شاید اگر زمانی که حوزه اطلاعاتمان از اعداد تنها به مجموعه اعداد طبیعی منتهی می شدو معلم درس ریاضیات از ما می خواست تا ضلع سوم مثلث قائم الزاویه ای را که طول هر ضلعش یک مثلث فراكتالي سانتی متر است اندازه بگیریم نمی توانستیم عددی را با چنین ویژگی بیابیم .سال ها پیش اقلیدس با حل مسئله ای نظیر این (محاسبه قطر مربعی که هر ضلعش ۱ واحد بود)، سلسله اعداد جدیدی را به مجموعه های شناخته شده اضافه کرد که یکی از شاهکارهای بی نظیر در پیشرفت ریاضیات و البته علوم بود. بله این عدد عجیب و غریب «رادیکال ۲» بود.

عموم تحصیلکردگان با هندسه اقلیدسی آشنا هستند. زیرا دست کم در طول دوران تحصیل خود به اجبار هم که بوده در کتاب های درسی با این هندسه که اصول آن بر مبنای اندازه گیری است آشنا شده اند. اما هندسه اقلیدسی تنها به بررسی اشکال کلاسیک موجود در طبیعت می پردازد. در این هندسه اشکال و توابع ناهموار، آشفته و غیر کلاسیک به بهانه اینکه مهار ناپذیرند، جایی نداشتند.

بالاخره در سال ۱۹۹۴، طلسم یکی از تئوری های ریاضی که از سال۱۸۹۷، عنوان شده بود، شکست و «مندلبرات(۱)» ریاضیدان لهستانی، پایه گذار هندسه جدیدی شد که به آن هندسه بدون اندازه یا هندسه فرکتالی گویند. هندسه بدون اندازه یکی از شاخه های جدید ریاضیات است که در برابر تفسیر و شبیه سازی اشکال مختلف طبیعت از خود انعطاف و قابلیت بی نظیر نشان داده است. با به کارگیری هندسه فرکتالی، افق روشنی پیش روی ریاضیدانان و محققان در زمینه بازگو کردن رفتار توابع و مجموعه های به ظاهر ناهموار و پر آشوب قرار گرفت.

واژه فرکتال به معنای سنگی است که به شکل نامنظم شکسته شده باشد. در این هندسه اشکالی مورد بررسی قرار می گیرند که بسیار نامنظم به نظر می رسند. اما اگر با دقت به شکل نگاه کنیم متوجه می شویم که تکه های کوچک آن کم و بیش شبیه به کل شکل هستند به عبارتی جزء در این اشکال، نماینده ای از کل است. به چنین اشکالی نام «خود متشابه» نیز می دهند.

اشکال فرکتالی چنان با زندگی روزمره ما گره خورده که تعجب آور است. با کمی دقت به اطراف خودتان، می توانید بسیاری از این اشکال را بیابید. از گل فرش زیر پای شما و گل کلم درون مغازه های میوه فروشی گرفته تا شکل کوه ها، ابرها، دانه برف و باران، شکل ریشه، تنه و برگ درختان و بالاخره شکل سرخس ها، سیاهرگ و شش و.

همه اینها نمونه هایی از اشکال فرکتالی اند.

این موجودات به عنوان اصلی ترین بازیگران هندسه منتج از نظریه آشوب شناخته می شوند.

این هندسه ویژگی های منحصر به فردی دارد، که می تواند توجیه گر بسیاری از رویدادهای جهان اطراف ما باشد، اما ویژگی اصلی که در تعریف آشوب و بالطبع هندسه آن وجود دارد، باعث می شود ما استفاده ویژه ای از این سیستم ببریم.

این روزها از فراکتالها به عنوان یکی از ابزارهای مهم در گرافیک رایانه ای نام می برند، اما هنگام پیدایش این مفهوم جدید بیشترین نقش را در فشرده سازی فایلهای تصویری بازی کردند.

برای آن که درک بهتری نسبت به فراکتالها داشته باشیم ، بد نیست نگاه مختصری به آشوبی بیندازیم ، که فراکتال ها فضای هندسی آنها را تعریف می کند.

● تعریف آشوب

فصل مشترک تعاریفی که برای مفهوم آشوب ارائه شده است ، تاکید بر این نکته است که آشوب دانش بررسی رفتار سیستم هایی است که اگرچه ورودی آنها قابل تعیین واندازه گیری است ، اما خروجی این سیستم ها ظاهری کتره ای و تصادفی دارد.

شاید به همین دلیل بود که استوارت ریاضیدان برجسته این موضوع را مفهومی احتمالاتی می دانست ، اما چیزی نگذشت که وی تعریف خود را اصلاح کرد و به تعریفی رسید که تقریبا مورد تایید عمومی قرار دارد.

بر اساس این تعریف ، آشوب به توانایی یک الگو و مدل ساده گفته می شود که اگرچه خود این الگو هیچ نشانی از پدیده های تصادفی در خود ندارد، اما می تواند منجر به ظهور رفتارهای بسیار بی قاعده در محیط شود.

برای مثال ، یک دنباله ریاضی از اعداد را در نظر بگیرید که برای توضیح یک پدیده مشخص وضع شده است.

اگرچه آشوب نظریه ای است که بر موضوعات گوناگون اجتماعی و سیاسی و اقتصادی نظر دارد، اما نیازمند زبانی برای تصویر سازی مفاهیم خود بود و این عرصه ای بود که هندسه آشوب یا فراکتالها خلق کردند.

ما در هندسه آشوب با تصاویر متفاوتی سرو کار داریم ، تصاویری که بزرگترین خصوصیات آنها این است که وقتی رسم آن را آغاز می کنیم ، نمی دانیم در نهایت با چه پدیده ای روبه رو خواهیم شد و از سوی دیگر بازخورد در آن نقش اساسی دارد. بیایید یک فرمول کلی را اجرا کنیم. یک مثلث متساوی الاضلاع رسم کنید.

حال میانه ۳ضلع را مشخص کرده و از رسم آنها به هم مثلث متساوی الساقین جدیدی به دست آورید. همین بلا را بر سر ۳مثلث تشکیل شده بیرونی بکنید و این روند را تا آنجا که می توانید ادامه دهید. شما با استفاده از یک رابطه ساده - که تقسیم اضلاع مثلث به نصف و اتصال آنها به هم بود - و با تکرار آن موفق به رسم نقشه یک ساختار فراکتالی شده اید.

چنان اشکالی اجزای سازنده هندسه جدی فراکتالی هستند؛ هندسه ای که به قول یکی از خالقان آن ، یعنی مندلبرات ابزاری را برای دیدن بی نهایت در اختیار ما قرار می دهد.این اشکال یک مشخصه بسیار عمده دارند. کل شکل از اجزایی مشابه شکل اول تشکیل شده است.

در مثال خودمان مثلث بزرگ از مجموعه ای مثلثهای همسان به وجود آمده است. این یکی از خصوصیات زیبای فراکتالهاست که همزمان از سوی طبیعت و فناوری به کار گرفته شده است.

اگر تا به حال به یک برگ سرخس نگاه کرده باشید، می توانید متوجه تشابه اجزای مختلف آن شوید. ساختار کل ساقه همانند یک برگ و ساختار یک برگ همانند یک جزو کوچک آن است.

اگر فرصت کردید نگاهی هم به سواحل دریاها یا تصاویر هوایی کوهستان ها و گیاهان اطرافتان بیندازید، بسرعت درخواهید یافت که در جهانی آشوب مثلث فراكتالي زده احاطه شده اید.

با استفاده از فرکتال ها به راحتی می توان نوار قلب بیماران را تفسیر کرد و حتی احتمال بروز حمله قلبی در آنها را حدس زد و از آن جلوگیری کرد.ممکن است روزی فرکتال ها در فهمیدن چگونگی کار مغز یا ارگانیسم بدن بسیار کارآ و مؤثر واقع شوند. پیدا کردن پیوندهای بین علم و زندگی، آن رویی از سکه است که متاسفانه در کشور ما اصلاً به آن توجهی نمی شود. در صورتی که پیدا کردن و بیان این پیوندها می تواند تاثیرات بسیاری بر پیشرفت علوم و عمومی کردن آن داشته باشد.

اگر هنوز از این موجودات ساده و در عین حال پیچیده هیجان زده نشده اید، این نکته را هم بشنوید.این اجسام نه یک بعدی اند، نه دو بعدی و نه سه بعدی.

این ها ابعادی کسری دارند؟ فراکتالها دقیقا به دلیل همین خاصیت ویژه ای که دارند، زمانی توانستند روشی برای ذخیره سازی تصاویر ارائه دهند. معمولا زمانی که یک تصویر گرافیکی قرار است به شکل یک فایل تصویری ذخیره شود، باید مشخصات هرنقطه از آن (شامل محل قرار گیری پیکسل و رنگ آن به صورت داده هایی عدی ذخیره شود و زمانی که یک مرور گر بخواهد این فایل را برای شما به تصویر بکشد و نمایش دهد، باید بتواند این کدهای عدی را به ویژگیهای گرافیکی تبدیل کند و آن را به نمایش بگذارد. مشکلی که در این کار وجود دارد، حجم بالایی از داده ها ست که باید از سوی نرم افزار ضبط کننده و تولید کننده بررسی شود.

اگر بخواهیم تصویر نهایی ما کیفیتی عالی داشته باشد،نیازمند آنیم که اطلاعات هریک از نقاط تشکیل دهنده تصاویر را با دقت بالایی مشخص و ثبت کنیم و این حجم بسیار بالایی از حافظه را به خود اختصاص می دهد، به همین دلیل ، روشهایی برای فشرده سازی تصویر ارائه می شود.

اگر نگاهی به فایلهایی که با پسوندهای مختلف ضبط شده اند، بیندازید متوجه تفاوت فاحش حجم آنها می شوید. برخی از این فرمتها با پذیرفتن افت کیفیت بین تصویر تولیدی و آنچه آنها ذخیره می کنند، عملا این امکان را در اختیار مردم قرار می دهند، که بتوانند فایلها و تصاویر خود را روی فلاپی ها و با حجم کمتر ذخیره کنند یا روی اینترنت قرار دهند.

برای این فشرده سازی از روشهای مختفی استفاده می شود. درواقع در این فشرده سازی ها بر اساس برخی الگوریتم های کار آمد سعی می شود به جای ضبط تمام داده های یک پیکسل مشخصات اساسی از یک ناحیه ذخیره شود، که هنگام باز سازی تصویر نقشی اساسی تر را ایفا می کنند.

در اینجاست که روش فراکتالی اهمیت خود را نشان می داد. در یکی از روشهایی که در این باره مطرح شد و با استقبال بسیار خوبی از سوی طراحان مواجه شد، روش استفاده از خاصیت الگوهای فراکتالی بود. در این روش از این ویژگی اصلی فراکتالها استفاده می شد که جزیی از یک تصویر در کل آن تکرار می شود.برای درک بهتر به یک مثال نگاهی بیندازیم. فرض کنید تصویری از یک برگ سرخس تهیه کرده اید و قصد ذخیره کردن آن را دارید.

همان طور که قبلا هم اشاره شد، این برگ ساختاری کاملا فراکتالی دارد؛ یعنی اجزای کوچک تشکیل دهنده در ساختار بزرگ تکرار می شود.

بخشی از یک برگ کوچک ،برگ را می سازد و کنار هم قرار گرفتن برگها ساقه اصلی را تشکیل می دهد. اگر بخواهیم تصویر این برگ را به روش عادی ذخیره کنیم ، باید مشخصات میلیون ها نقطه این برگ را دانه به دانه ثبت کنیم ، اما راه دیگری هم وجود دارد. بیایید و مشخصات تنها یکی از دانه های اصلی را ضبط کنید. در این هنگام با اضافه کردن چند عملگر ریاضی ساده بقیه برگ را می توانید تولید کنید.

در واقع ، با در اختیار داشتن این بلوک ساختمانی و اعمال عملگرهایی چون دوران حول محورهای مختلف ، بزرگ کردن یا کوچک کردن و انتقال می توان حجم تصویر ذخیره شده را به طور قابل توجهی کاهش داد.

در این روش نرم افزار نمایشگر شما هنگامی که می خواهد تصویر را بازسازی کند، باید ابتدا بلوک کوچک را شبیه سازی کرده ، سپس عملگرهای ریاضی را روی آن اعمال کند، تا نتیجه نهایی حاصل شود.

به نظر می رسد این روش می تواند حجم نهایی را به شکل قابل ملاحظه ای کاهش دهد، اما تنها یک مشکل کوچک وجود دارد و آن هم این نکته است که همه اشیای اطراف ما برگ سرخس نیستند و بنابراین الگوهای تکرار در آنها همیشه اینقدر آشکار نیست.

بنابراین باید روشی بتواند الگوهای فراکتالی حاضر در یک تصویر را شناسایی کنند و در صورت امکان آن را اعمال کند.

به همین دلیل ، معمولا روش فراکتالی با روشهای مثلث فراكتالي فشرده سازی دیگر همزمان به کار برده می شود؛ یعنی اگر الگوهای تکرار چندان پررنگ نبودند، بازهم فشرده سازی امکانپذیر باشدالبته زیاد نگران ناکارامدی این روش نباشید. یادتان نرود، شما در جهانی زندگی می کنید که براساس یافته جدید ساختاری آشوبناک دارد.

مطمئن باشید هندسه فراکتال بر بسیاری از اشکال عالم حاکم است ؛ حتی اگر در نگاه اول چندان آشکا ر نباشد.

شما نیز با دقت بیشتر به اطرافتان و یافتن ارتباط های ملموس بین ریاضی و زندگی می توانید از سختی و به اصطلاح خشک بودن ریاضی بکاهید.

۱) تئوریسین فرکتالها

مندلبورت در کالج نیوتن کمبریج بنوت مندلبورت در سال ۱۹۲۴ در لهستان بدنیا آمد. پدر او دستفروش لباس های دست دوم بود و مادرش پزشکی می کرد. او مبانی ریاضیات را از دو عموی خود فرا گرفت و به همراه خانواده خود در سال ۱۹۳۶ به فرانسه مهاجرت کرد. در آنجا با کمک یکی دیگر از عموهایش که پروفسور ریاضیات بود اقامت فرانسه را گرفتند.

این مهاجرت باعث شد تا وی بیشتر به ریاضیات علاقمند شود اما جنگ جهانی دوم شروع شده بود و مندلبورت هراس این را داشت که نتواند به ریاضایات بپردازد. در باره او می گویند :

"جنگ، تنگدستی و نیاز به زندگی او را از مدرسه و تحصیل دور کرد و به همین دلیل بود که او را حد اکثر یک معلم دبیرستانی خودآموز خوب می دانستند."

عدم تحصیل دانشگاهی برای او یک مزیت بود چرا که او دیگر به پدیده های هستی به چشم یک ریاضیدان یا دانشمند آکادمیک نمی نگریست، این طرز آموزش همچنین به وی فرصت داد مثلث فراكتالي تا روشهای بسیار جالبی برای استفاده از هندسه در ریاضیات ابداع کند. نبوغ ذاتی او در هندسه باعث شد تا بتواند بسیاری از مسائل ریاضی را با روشهای هندسی حل کند.

او در سال ۱۹۴۴ فرصت آنرا یافت تا در امتحانات پلی تکنیک شرکت کند و توانست بسهولت قبول شود و این سرآغاز تحصیلات جدی وی بود. پس از پایان تحصیلات به آمریکا رفت و در انستیتوی مطالعات پیشرفته پرینستون مشغول به فعالیت شد.

پس از ده سال دوباره به پاریس بازگشت و شروع به کار برای مرکز ملی تحقیقات علمی فرانسه نمود. طولی نکشید که ازدواج کرد و دوباره به آمریکا برگشت. و در آنجا با یک شرکت آغاز به همکاری نمود. وی همواره از این موضوع صحبت می کند که دراین شرکت چقدر آزاد است و می تواند روی هر پروژه ای کار کند و فرصتی که این شرکت در اختیار او قرار داده است هیچ دانشگاهی نمی تواند به او بدهد.

تئوری فرکتالها علاوه بر زیبایی خاصی که از دید ریاضی دارد یکی از روشهای بسیار کاربردی در تفسیر و مدلسازی طبیعت می باشد. آشنایی با فرکتالها به هنرمندان اجازه می دهد تا آثار هنری بسیار زیبایی را خلق کنند.

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برو به دکمه بالا